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ABSTRACT

i A comprehensive study of data compression tech-
,niques is presented in this paper. A description
of these techniques is provided along with a per-
'formance evaluation. The complexity of the hard-
;ware resulting from their implementation is also ad-
‘dressed. The compression effect on channel distor-
‘tion and the applicability of these algorithms to real-
‘time processing are presented. Also included is a
proposed new direction for an adaptive compression
| technique for real-time processing.

 INTRODUCTION

The increase in resolution and in the number of
spectral bands of modern multispectral imaging sys-
tems creates a tremendous burden on the down-link
channel and the bandwidth required to transmit data
to ground stations. In fact, the future imaging sys-
tem will produce data at rates that will exceed the

. capability of the down-link channel. Data compres-

sion is one of the most powerful tools available to
reduce the data volume to be transmitted. Even-
tually, data compression will be an essential part of
modern telemetry systems.

Since most users insist on reversible processes,
this paper focuses only on reversible data compres-
sion techniques and explores the possibility of their
real-time implementation. Various reversible data
compression techniques are described, and an eval-
uation of these techniques in terms of performance,

. implementation complexity, and immunity to chan-
' nel noise is presented.

INFORMATION THEORY AND DATA
COMPRESSION

The coding of the numerical data is accomplished
by means of pulse code modulation (PCM) requiring,
in general, a very large bandwidth. In fact, the
number of pulses per second to be transmitted is a
function both of the number of samples and of the
number of bits necessary to represent each sample.
To reduce this large number of pulses per second
(and consequently the bandwidth), it is necessary to
introduce data transformation represented by data or
bandwidth compression. Such a transformation can
be considered as one which operates on the data given
by an information source in such a way as to reduce
the amount of nonuseful or redundant data. Since
compressed data are, in general, more sensitive than
noncompressed data to the channel noise, a channel
encoding might be necessary for a noisy channel. An
error in the compressed data will generally introduce
a considerable amount of distortion.

Entropy

The entropy is defined as the amount of informa-
tion that is emitted by a data source. The theoreti-
cal basis of data compression depends on Shannon'’s
first theorem on the noiseless coding of information.
Given a zero memory source S emitting the sym-
bols s; (+ = 1, 2, ..., n) with the corresponding
(independent) probabilities P;, we can calculate the
entropy of the source under the above conditions as

" 1
H(S)=7) FPilogy & (1)
i=1 t

Each of the symbols sy, s2, ..., sp can be
mapped into a fixed sequence of k symbols taken from
a finite alphabet X = z1, z9, ..., z}. This proce-
dure corresponds to encoding each symbol s, into a
code word z; belonging to the set zy, z2, ..., z, and
having length [;, We can define the average length of
this code L as "

>

1=1

L= Pl (2)

Such a code is said to be compact for that source if
its average length is less than or equal to that of any
uniquely decodable code.

From equations (1) and (2), the following prop-
erty of H(S) can be proved:

H(S)<L (3)

Hence, H(S) is a lower bound for code average
length. The ratio

is defined as the efficiency of the source code, and
1—7 is the redundancy. The term H(S) can be used
to evaluate an upper bound for the mean compression
ratio

[l

CR= =2 (4)

|

The symbols Ls and L represent the source and
encoded mean word lengths, respectively.
From equations (3) and (4) we can obtain the
maximum compression ratio CRpax as
Ls

CRmax = F(3)

(5)

Equations (3) through (5) are true if the compression
method is perfectly reversible.



A higher value for CR than that given by equa-
tion (5) can only be obtained by introducing a certain
amount of distortion in the reconstructed signal. In
the latter case, the process is said to be irreversible.
In this paper, only reversible compression methods
are considered.

Channel Capacity

The entropy (eq. (1)) can be considered as the
average information associated with the emission of a
source symbol. Let the output alphabet reproducing
the source be B with r symbols. Then B = {bj}
where j =1, 2, ..., r, and P(b;) is the probability of
b;. Mutual mforrnatlon can be defined as a function
of he source symbols {S;} € S and of the received
symbols {b;} € B by

ZP i by log:zm (6)

and it represents the average information obtained
from the emission of a symbol s; when b; is known.
The mutual information I(S,B) is a nonnegative
convex function of the probabilities P(s;) and always
admits a maximum. This maximum, taken over
all the possible choices of the source probability
distribution P(s;), is called the channel capacity C,
where

C = max I(S,B) (7)

{P(si)}

In fact, if H(S) < C, it is always possible to find a
channel coding method for transmission on a noisy
channel, such that the error probability at the re-
ceiver is lower than an arbitrary small quantity. How-
ever, this could imply the use of a prohibitively long
code, which is not of practical usefulness.

Rate Distortion Function

Let a vector X with n components of the source
alphabet {z|, 29, ..., zp}, ; € S, be encoded in
avector Y = {y1, y2, ..., yn} with y; € B. We
denote the word distortion measure by Dp(X,Y),
which could be expressed as the cost of sending =,
and receiving y; where 7 # 5.

The function D,,(X,Y) is defined by the user. An
often-used measure of distortion is the single-letter
fidelity criterion, where D,(X,Y) is the mean of the
single distortions introduced by representing x; with
yii ie.,

DuX.Y) = 3" Dl ) (8)

For channels with memory, more complex definitions
are needed to measure distortion, and in general,
these are very difficult to deal with.

In many cases, equation (8) is used as a first ap-
proximation for systems with memory. From equa-
tion (8), the overall average distortion D will depend
on the conditional probability P(y;z;) and is given

by
D= ZP

when D turns out to be less than a preset quantity D,
P(y;|z;) is called D-admissible. Now we can define
the rate distortion function R(D) as the minimum of
the average mutual information

yllzl) (Iivyi) (9)

R(D) = min
Plyglzy)
D-admissible

Zl’(zl P(y;|z;) log I()y(llz)l) (10)

where the minimum is taken over all the possible
P(y;|z;) values that are D-admissible.

REVERSIBLE DATA COMPRESSION
TECHNIQUES

Reversible data compression techniques include
redundancy reduction, differential pulse code mod-
ulation (DPCM), and linear transformation (refs. 1
4). The various algorithms used in these techniques
are summarized in figure 1.

Redundancy Reduction

The redundancy reduction method is based on
whether a data point could be successfully deter-
mined within a preset tolerance of the actual point.
Predictions and interpolations are carried out accord-
ing to the following difference polynomial:

Y/ =Y+ AY  + AT 4+ ATY
where
Yt' predicted data sample at time ¢
Y; sample one period prior to ¢
AYy =Y, 1-Yi-2
A%Y,_, =AY, -AY,_
A, =AY - Aty

The basic difference between predictors and interpo-
lators is that predictors use only past samples to pre-
dict the present one, whereas interpolators use both
past and future samples. Comparison of various de-
grees of difference polynomials has shown that above




a third-degree polynomial, there is little or no im-

. provement in performance (ref. 5). It is the author’s
' opinion that the improvement from first degree to

second or third degree does not justify the added
complexity. (See fig. 2.) Hence, the evaluation in this
paper is done on zero- and first-order polynomials.

Prediction Algorithms

The following compression algorithms predict the
present sample by using a difference polynomial. If

Y, - Y| <K (11)

where

Y: actual sample value

Yt predicted value
K  tolerance band

then the sample is not transmitted. The process
continues until the condition in equation (11) fails,
then the actual sample is transmitted with a code
appended to inform the ground station of the num-
ber of samples that were not transmitted. At the
ground station, the decompressor fills in the samples
that were not transmitted by using the same poly-
nomial that was used at the compressor. The com-
pressor and decompressor can use one of the follow-
ing polynomials: (1) zero-order predictor, (2) zero-
order predictor with an offset, (3) first-order predic-
tor, (4) first-order predictor with a slope correction,
or (5) optimum linear predictor. These polynomials
are discussed in the sections which follow.

Zero-order predictor. In the zero-order predictor
(ZOP) algorithm, it is always assumed that

Yi=Y/, (12)

where
Y, sample to be predicted at time ¢

Y/ | actual transmitted sample or previous
successfully predicted sample

A graph illustrating this algorithm is shown in fig-
ure 3. At time ¢, we can see that there will be
no transmission, since the tolerance band (the two
dashed lines) contains the previous sample point.
Whereas, at ¢t + 2 the actual data point is transmit-
ted, since it falls outside the tolerance band placed
on the predicted sample.

Zero-order predictor with offset. The zero-order
predictor with an offset is basically the same as the

ZOP. The prediction polynomial is Y, = Yt’_1 as long
as a sample is not transmitted (redundant). Once
a sample is transmitted, the first point in the next
interval is offset as follows:

o= Yoy +loen(Yo — ¥ ) (19)
where
Y; 1 sampleati—1

Yt’_2 sample at t—2 (If the sample is transmitted,
the actual sample is used. If not, the

predicted value is used.)
|6|  magnitude of offset

These two algorithms are relatively simple to imple-
ment; however, they perform best when the actual
data vary very slowly.

First-order predictor. The first-order predic-
tor (FOP) algorithm is similar to the above algo-
rithms except that the predictor uses a first-order
polynomial

Yo=Y/ 1 +AY;-1=2Y{ 1 -Y o (19
A graph illustrating the FOP is shown in figure 4.
The implementation complexity for this algorithm is
still low, and it performs well with data that vary at
a medium rate.

First-order predictor with slope correction. The
difference between the first-order predictor with a
slope correction and the algorithms previously de-
scribed is in the prediction polynomial. In this al-
gorithm, as long as | Y| < K (the tolerance band),
then

Vi =Y., +AY; (15)
where
Y =Y1-Yi
AY; increment in Y, computed 7 sample periods
prior to t — 1
T number of sample periods between ¢ — 1 and

time of prior transmission

If [>>| > K, then
}}tZY}I_l‘FAYO

where

Ksgn)’

c

K -
AYp = AY, + B5882 | 2
T



andc=2if7>1;¢c=1if 7 = 1. The implemen-
tation complexity of this algorithm is medium. This
algorithm can handle data that are more active, and
it follows the data slope faster than the previously
discussed predictors.

Optimum linear predictor. The optimum linear
predictor algorithm predicts the present sample by
using a linear combination of past samples

Vi=S"arY (17)
k=1

The coeflicients a; are chosen to minimize the mean
square error between the predicted and actual values.
These coefficients are found by solving N linear
equations involving the autocorrelation function

N
agRy((r — K)T) = Ry[(r + T] (r=1, 2, ..., N)
k=1

where

Ry(r — k)T

autocorrelation function of signal

for lag of (r — k)T

h nummber of sample periods since
last transmitted sample

T time between sampling

The implementation complexity for this algorithm is
quite high.

Interpolation Algorithm

The interpolation algorithm approximates the
data with a zero- or first-order polynomial curve.
The best way to describe this method is by an ex-
ample. First transmit Yy and Yy, then approximate
Y, by using equation (12) or (14). Determine if Y,
is within £K units of Yy and Yj. If true, then ap-
proximate Y3 as above and determine if Y3 is within
+K of Yy, Yi, and Y,. Keep repeating this pro-
cess until the above condition fails; that is, Y, is not
within £ K of all the previous samples. When this
happens, a starting point and an ending point of a
line segment are transmitted. This line segment rep-
resents the points Yy, Yy, ..., Y, . This process
then continues with Y, considered as Yy for the new
line segment.  Several methods exist for represent-
ing redundant samples by a straight-line segment.
To achieve the largest compression, it is necessary
to select a line segment within K units of as many

4

samples as possible (where K is the desired toler-
ance). This optimum algorithm requires freedom of
both the starting and ending points of the line and
results in four degrees of freedom. Since the four-
degree-of-freedom algorithm is an extremely complex
process to implement, anchoring the starting point
of the line segment to an actual or computed sample
greatly simplifies the implementation. One way is to
anchor the starting point of a new line to the end of
the previous line. (This is called a joined-line seg-
ment.) Another way is to anchor the starting point
of the line to the actual out-of-tolerance sample.

Differential Pulse Code Modulation (DPCM)

The general block diagram of a DPCM system
1s shown in figure 5. In this technique, a predicted
sample Y, is evaluated by using any of the predic-
tion algorithms. The difference e, between the ac-
tual sample and the predicted one is quantized. In
basic DPCM, the uniform quantization of the e,, val-
ues may cause an edge degradation. However, if the
correlation of the input signal is high and the pre-
diction algorithm is efficient, DPCM generally offers
a higher efficiency than PCM. In general, with an
equal number of bits, the signal-to-noise ratio (SNR)
is higher for DPCM than for PCM. With an equal
SNR, DPCM requires a lower number of bits than
PCM. The gain G in the SNR of DPCM with respect
to PCM can be expressed by

_BYFy B

C= B2 T By -T2

(18)

where E{Y;?} and E{e2} are the variances of Y;, and
en, respectively.

Minimizing the denominator of equation (18) will
improve the gain. Basic DPCM does offer a bet-
ter performance than PCM. Nevertheless, when non-
stationary signals are processed, there may be large
peak errors in the reconstructed data. To avoid these
errors, many adaptive DPCM techniques were stud-
ied (refs. 6-9). In the adaptive DPCM, the step am-
plitude of the quantization interval changes to follow
the signal evolution. The step value becomes small
when the signal is quiescent and large when the signal
is more active. However, with adaptive DPCM, the
improvement obtained may become apparent only
when large variations of the signal follow quiescent
periods. In this case, the step amplitude can assume
a very low value, and before it has time to become
comparable with the difference signal, large errors
can arise.

Linear Transformations

The transform coding technique uses a mathemat-



" ical operator to transform the input image data into
another domain, where the closely correlated input
data are transformed, ideally, into uncorrelated data.
The basic block diagram of a transform system is
shown in figure 6. To reduce the data throughput,
the image is divided into blocks of data for subse-
 quent processing. Any errors that occur are averaged
. over a single block, and thus error propagation is re-
, duced. Until the coder stage (see fig. 6), the process
is completely reversible with no loss of information.
The coder provides the data compression by select-
. ing the various coefficients according to their signif-
icance until a preset threshold is met. Beyond this
threshold, the remaining coeflicients are discarded.
* This method uses a major property of the transform,
by which the input image energy is compacted into
' a few coefficients. This enables the least important
coeflicients to be deleted without a large increase in
the error of the reconstructed image. Ideally, the
thresholding should be adaptive by sending more in-
formation when there is higher activity in a block
of data (e.g., at an edge of an object). The inverse
transformation uses the same information as the for-
ward transformation to reconstruct the image. The
advantages of this method over other methods are
less sensitivity to variations between differing images
and superior coding at the lower bit rates. The main
disadvantages are some blurring at the edges and a
certain loss of details in the image caused by the loss
of high spatial frequencies. In addition, the hardware
implementation of these transforms is complex, and
the computations are time consuming.

Mathematically, the transform can be expressed
as a summation over the dimensions considered. For
an NV X M image array f(z,y), the two-dimensional
transformed array P(u,v) is given by

T,y u,v) (19)

ZZfW

r=1ly=

where the operator kernel O(z,y : u,v) represents a

weighting constant, which is, in general, a function

of both input and output image coordinates.
Similarly, the inverse transformation is given by

Yz, y:u,v) (20)

N M
f(x,y)=zz

Fast algorithms do exist, and the implementation of
these algorithms can greatly enhance the throughput
of the compression system. Some of the most com-
mon operators and their properties are discussed in
the following sections.

Karhunen-Loeve Transform

In the Karhunen-Loeve transform (K-LT), the
matrix is found by first evaluating the covariance ma-
trix of the image, which is of N2x N2 dimensionality
for an ¥V x N image. Then the eigenvectors of the
covariance matrix are computed and used as the ba-
sis for the transformation matrix. These bases are
unique for each data block. Because of the tremen-
dous amount of computation, the K-LT is only used
as a universal reference in the comparison of other
transforms.

Discrete Fourier Transform

The main advantage of the discrete Fourier trans-
form is the fast Fourier transform (FFT) introduced
by Cooley and Tukey in 1965, which reduces the com-
putation involved. Typically, the number of complex
operatlons foran Nx1FFTis N log2 N as compared
with N2 computations required in the conventional
approach. The main disadvantage with this trans-
form is that complex arithmetic is involved. The per-
formance of this method is shown in figure 6 along
with that of the other transforms discussed. The
discrete Fourier transform is not very efficient at the
lower values of block size but does improve as the
block size is increased.

Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) provides the
most promising performance of all the techniques be-
cause of its near-optimum mean-square-error perfor-
mance. (See fig. 7.) The DCT is derived from the
Fourier expression by taking the real parts of its ex-
ponential form. The two-dimensional forward trans-
formation F(u,v) for an N x N image f(j, k) is given
by

—1N-1

ZZfJ,

y cos(2] + )u7r cos(21c + Do
2N
(u,v =0, 1,

Flu,0) = 4Cuv

LN-1) (21)

where C(u,v) = 1/2 for v = v = 0 and C(u,v) =1
for u,v =1, 2, ..., N —1. The DCT may be
implemented by using a double-sized FFT or directly
using a fast cosine transform devised recently by
Chen et al. (ref. 10). As the block size increases
to N > 16, the basis vectors of the transformation
matrix approach the eigenvectors of a first-order
Markov process correlation matrix, and hence the
performance of the DCT approaches that of the
K-LT.



Hadamard Transform

The basis vectors of the Hadamard transform are
a series of rectangular waveforms taking the values
of +1 or —1 only. This simplifies the hardware
implementation, since the Hadamard transform does
not require any multiplication.

The two-dimensional Hadamard transform for an
N x N f(z,y) array can be written in series form as

N—-1N-1

Fluv)= Y 3 flay)(-nFEve) ()

=0 y=0

where
N-1
P(z,y:u,v) = Z [ug(2:) + vi(wy)]
1=0

The terms u;, v;, z;, and y; are the binary represen-
tation of u, v, z, and y, respectively, for example
(u)decimal = (Un-1  Un-—2 ul“O)binury
where u; € {0, 1}. The summation in the exponent
in equation (22) is performed modulo two. The
main disadvantage of this transform is that it is

not as efficient in energy compaction as the previous
transforms; thus, the compression ratio is degraded.

SOFTWARE EVALUATION OF COM-
PRESSION ALGORITHMS

The performance of each compression algorithm
was assessed from the following criteria:

1. The scene activity that gives the best results in
terms of lowest mean square error in reconstruction.

2. Compression efficiency.

3. Implementation complexity (the suitability for
real-time implementation).

4. Immunity to channel noise. The comparison
was done according to equation (9), and D(X,Y)
was evaluated by using equation (8). The channel
was assumed to be a binary symmetric channel.

5. Energy compaction property.

6. Additional information required for linear
transformation.

Since the performance of most of the algorithms
is sensitive to the scene correlation, Gaussian white
noise data were generated and passed through a filter
to introduce the desired correlation to the data. The
filter equation is given by

Y=o, 4+ (1~ Ol)Xn (23)

Y, output of filter

Y, 1 previous output of filter

X, input {(Gaussian white noise data)
o parameter < 1 for stability criterion

Hence -
Hiw) = o (24)

Tl ae‘;“;
where w is the radian frequency and
(1-0)?

2 _
[H{W) = 1 — 2a(cosw) + n? (25)

where H(w) is the Fourier transform of the transfer
function of the filter. Then the power spectra of the
filter output are given by

Sy(w) = |H(w)|*8z(w)

where S;(w) are the input power spectra. Since the
input is white Gaussian, then

_ 2
SI(“)) =0y
where o2 is the variance and

)22
Sylw) = 1 - étx(cos)w)z—k a? (26)

Taking the inverse Fourier transform of equation (26)
yields

1 [T (1 - a)’o? _
R,(n) = — SN S S ] 27
y(1) 2 L,r 1 - 2a(cosw) + (126 w (27)

Evaluating equation (27) by contour integration
yields
V(1 — 20+ o?
Ry = U0 RC 2 oy

1-—a? x

where Ry(n) is the autocovariance of the filter out-
put. Notice that Ry(n) is a function of the filter
parameter «. In evaluating the compression algo-
rithms, we increased « from 0.1 to 0.9 in increments
of 0.1, then from 0.9 to 0.99 in increments of 0.01.
The results of the software simulation are summa-
rized in table I. The K-LT and the DCT transforms
are best in accommodating all types of scene activ-
ity with the best efficiency in terms of mean square
error and compression ratio. However, their imple-
mentation is complex. The Hadamard algorithm and
(if bursts are ignored, since they occur infrequently)




“the adaptive DPCM algorithm can handle all types
of scene activity; however, their efficiencies are not
as good as those of the K-LT and the DCT. The pre-
dictors and interpolators, which are simple to imple-
ment, were best suited for a particular type of scene
activity, as seen in table I.

ALGORITHM SWITCHING FOR DATA

- COMPRESSION

Because of the relatively low complexity associ-
ated with the implementation of the predictors and
interpolators, these algorithms are attractive alterna-

~ tives for implementation in imaging systems. How-

ever, the problem associated with them in terms of
being able to handle only one type of data activity
must be overcome. The author considered combining

- several predictors and interpolators that could han-
. dle various types of data activity with an activity-

measuring scheme that would select the best algo-
rithm to compress the data at hand. In order to
implement this system, an analysis of the ZOP, the
FOP, and the first-order interpolator (FOI) was per-
formed to determine which range of data activity is
best handled by each algorithm. The test was per-
formed on data that had a wide range of activity.
To achieve that activity range, the data were passed
through the filter of equation (23), and « was varied
from 0.1 to 0.99. (The symbol « represents the filter
parameter which corresponds to different values of
02, as shown in equation (28), by letting n = 0.) A
gain function was defined as a criterion to determine
at which value of o the switching should occur for
each algorithm. This gain function is defined as

CR
G=—"r
€2

where CR is the compression ratio and €2 is the mean
square error. Figures 8, 9, and 10 show plots of the
gain as a function of the filter parameter o for values
of K = 2, 4, and 6, respectively. It can be seen
from these plots that the FOI has the highest gain for
values of a € 0.91. For o > 0.91, the ZOP provides
the highest gain.

According to the above analysis, the compression
system would include two compression algorithms:
the ZOP and the FOI. The FOI would be used to
compress data for values of o < 0.91, then the system
would switch to the ZOP for values of o > 0.91.
A general block diagram of that system is shown in
figure 11. Notice that in such a system, the image is
divided into subimages or segments, and a decision
is made for every segment. Overhead information
1s sent at the beginning of each block to inform the
ground station of which compressor was used over

that block. The algorithm-switching aproach offers a
considerable improvement over the use of one simple
compression algorithm for all types of image data.

CONCLUDING REMARKS

A survey of various compression algorithms and
an evaluation of their performance and implementa-
tion complexity were presented. It was shown that
the more complex algorithms are able to handle all
types of data, whereas algorithms which are simple
to implement are best suited for a specific type of
data activity. An approach has been presented and
described which employs a measure of scene activ-
ity as a criterion to switch between various simplistic
algorithms. This approach offered a considerable im-
provement over the use of one simple compression
algorithm for all types of image data.

Further evaluation of other algorithms described
in the survey (e.g., zero-order predictor with an off-
set, first-order predictor with a slope correction, and
zero-order interpolator) is necessary to determine
their applicability to the system and to optimize per-
formance. Furthermore, other scene activity switch-
ing mechanisms (e.g., entropy) warrant additional
investigation.

NASA Langley Research Center
Hampton, VA 23665
April 26, 1985
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Data compression

[ |

Differentic
Redundancy lse o dll Linecar
reduction | pulse L? € transformation
modulation
(DPCM)
Karhuncen-Loeve
— Basic DPCM transform (K-LT)
Adaptive DPCM Fourier transform
Discrete cosine
transform (DCT)
Hadamard transform
L—— Haar transform
Prediction Interpolation
methods methods
Optimum linear predictor —— Zcero-order interpolator
Zero-order predictor l— First-order interpolator
. . .
Zero—order predictor with offscet 1 :
First—-order predictor L—— nth-order interpolator
First-order predictor with slope correction
[ ]
L]
L3

nth-order predictor

Figure 1. Reversible data compression techniques.
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Figure 2. Mean square error versus number of points employed in predictor.
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Figure 3. Data sampling and selection: zero-order predictor.
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Figure 4. Data sampling and selection: first-order predictor.
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Figure 5. Block diagram of differential pulse code modulation system.
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